...
Anyhow, I'm pretty sure the code is working, so I'm going to go ahead and look at the NCP data. Identifying a common set of stars from that data is probably going to be more difficult because we don't have stacked images, but my idea now is to look for a few "good" images taken in photometric conditions and identifies the stars from there. Will try this tomorrow.
...
Data access on Odyssey:
- Run JAuth.jar to get login key
- ssh -Y into to odyssey.fas.harvard.edu, or herophysics.fas.harvard.edu, using the electronic key.
- run tcsh
- source .myrcstubbs
- data are at /n/panlfs/data/MIRROR/ps1-md/gpc1/
- nightly science uses individually warped images, nightly stacks run on stacked frames
- image types: wrp is warped.
- see available modules with "module avail"
- load a module with "module load hpc/ds9-5.6"
- photometry is in .cmf files, as FITS tables.
- in python:
- import pyfits as p
- p.open('filename')
- print a[0].header
- or, imhead on command line
- a[1].data.AP_MAG for aperture magnitudes
- PSF_RA and PSF_DEC are in the skycell files.
- make a scratch directory for data in /n/panlfs
...