Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Sept 1, 2022

Bought 4 seat licenses for MODTRAN6. 

...

It wants Ozone content as gm/cm^2 and we have it in Dobson units. Wikipedia says 1 DU is 2.69×1020 molecules per meter squared.
Molecular weight of O_3^16 is 47.992 gm/mole. One mole is 6.023E23 molecules. One square meter is 1E4 cm^2. So: 

1 DU = 2.69E20 molecules/m^2 * (1m^2/1e4 cm^2) * ( 47.992 gm/mole) * (1 mole/6.023E23 molecules) = 2.1434e-06 gm/cm^2

so to get O3 in gm/cm^2 do (DU*2.1434e-06) 

250 DU = 5.3586e-04 gm/cm^2

PWV is in mm, collapsing entire column density into some depth of liquid. MODTRAN6 wants gm/cm^2 of H2O. Density of water is 1 gm/cc, so 1 cm of water is 1 gm/cc. 
So for this the conversion is 10 mm PWV → 1 gm/cc. Typical Pachon PWV is a few mm. Let's use a default 5mm PWV which corresponds to 0.5 gm/cm^2. 


Set up point-to-point geometry from LSST elevation to 80 km, straight up.

Data go to ~/MODTRAN6

rename .tp7 output files with X.XX***.dat where X.XX is airmass to 3 sig figures
Matlab code ReadModtran6.m will then read in and act on these files. Need at least 4 of them. 

The ***.psc output file is really simple; nm, T in two columns. 


Default Atmosphere at zenith

...

 Images from March 16 2023 seq num 477 has a star with nice stellar atmosphere features. HD 73495 = Eta Pyxidis HR 3420. HD 73495. HIP 42334 is an A0V star.
Spectrum from RubinTV is

Image Modified


Copied images from 20230316 to local disk on laptop. Need to include bias frames as well as images of interest. Note that dispersion depends critically on disperser-to-CCD spacing so we should solve for it each time. 
Note apparent m=0 stellar contamination at blue end of band3. We need to either subtract those out or median-filter with rotations. 

Balmer lines are at

486.135
434.047
410.173
397.007
388.906
383.540

Downloaded seqnums
477
745-755 bias frames

Ran InjestAndAnalyze.m to create bias frames and full frame debiased images. 

Ran Specexam2.m on frame AT_O_20230316_000477.full.debias.fits. m=0 star centroid is row 300.4 and col 1737.1

zoom on spectrum at absorption lines

Image Modified



March 21, 2023

...

do geographical search on latitude -30:14:40.68 longitude -70:44:57.90; = -30.245, -70.75

Well, that didn't work so well. Try this: 
https://www.esrl.noaa.gov/gmd/grad/neubrew/SatO3DataTimeSeries.jsp 

That works! Can get plots as well as CSV data files:



Image Added

For our site: 

Image Removed



Ozone data file for Rubin site: Ozone2023.csv

...

angle-corrected quadband throughput: Quadband.dat

Ozone for Oct 10 2023 is 300 283.7 Dobson units, interpolated to our site location.


Try to get barometric pressure right. Used https://weatherspark.com/h/d/25822/2023/10/10/Historical-Weather-on-Tuesday-October-10-2023-in-La-Serena-Chile#Figures-Pressure for barometric pressure at La Serena airport. 

On Oct 10 2023 at 10 pm local the pressure at airport was 30.06 inches of mercury which is 1018 mbar. On Nov 23 2023 at 10 pm local it was the same value (precision is 0.01 inches). And at the summit we had 744.35 at that same time. 
So a good pressure value to use for Oct 10 2023 is 0.74435 mbar

Let's explore sensitivity to MODTRAN parameter choices. 

Over the course of a year, barometric pressure at La Serena airport ranged from 29.8 in to 30.3 in of mercury. That's less than +- 1% variation.
PWV varies (very conservatively) from 0- 10 mm
Ozone varies from (see plot above)  250 to 300 Dobson units
Stellar colors go from -1 to 1. 

So introduce perturbations that amount to mean-to-peak excursions, i.e. half the peak-to-peak value. This will show peak extinction excursions about the mean. 

Let's explore sensitivity to MODTRAN parameter choices. 
MATLAB program takes Star temperature, PWV, barometric pressure, and Ozone as inputs. 
Pressure first: 

T in 1000K.  Dobson.   PWV (mm). P(mbar) m1-m4.    E1.          E2.        E3.             E4.         E14.         E24.          E34

10.5000  298.0000    5.0000    0.7327    0.0036    0.3892    0.1887    0.1194    0.1030    0.2862    0.0857    0.0164
10.5000  298.0000    5.0000    0.7400    0.0068    0.3930    0.1906    0.1205    0.1037    0.2894    0.0869    0.0168
10.5000  298.0000   10.0000    0.7400    0.0067    0.3930    0.1906    0.1205    0.1038    0.2892    0.0868    0.0167
10.5000  275.0000    5.0000    0.7400    0.0096    0.3930    0.1905    0.1195    0.1008    0.2922    0.0896    0.0187
10.5000  250.0000   10.0000    0.7400    0.0125    0.3930    0.1904    0.1185    0.0980    0.2950    0.0924    0.0206
  6.0000  250.0000   10.0000    0.7400    1.0046    0.3872    0.1875    0.1184    0.0976    0.2896    0.0900    0.0208

E1 is extinction in band 1 in mag per airmass, bluest band. E14=E1-E4, etc. 


We see color-extinction changes of 

Image Added


Final selection for Oct 10 2023:

Image Added

which gives: 

10.5000  283.7000    5.0000    0.7443    0.0105    0.3953    0.1916    0.1205    0.1023    0.2930    0.0893    0.0182
5.0000  283.7000    5.0000    0.7443    1.4842    0.3868    0.1875    0.1203    0.1018    0.2850    0.0857    0.0185
15.0000  283.7000    5.0000    0.7443   -0.3492    0.3975    0.1927    0.1206    0.1024    0.2951    0.0902    0.0181
8.0000  283.7000    5.0000    0.7443    0.4131    0.3929    0.1905    0.1205    0.1022    0.2908    0.0883    0.0183

Except OOPS we are using c34 as the definition of color, to reduce airmass sensitivity, recreate table with c34 in final column: 

  5.0000  283.7000    5.0000    0.7443    1.4842    0.3868    0.1875    0.1203    0.1018    0.2850    0.0857    0.0185    1.0369
10.5000  283.7000    5.0000    0.7443    0.0105    0.3953    0.1916    0.1205    0.1023    0.2930    0.0893    0.0182    0.6828
15.0000  283.7000    5.0000    0.7443   -0.3492    0.3975    0.1927    0.1206    0.1024    0.2951    0.0902    0.0181    0.5998

Fitting to C34 color (typcially around 0.5) gives

 E14=  0.3090   -0.0231*C34
 E24=  0.0964   -0.0103*C34
 E34=  0.0176    +0.0009*C34

and for an A star we get E14=0.2930, E24=0.0893, E34=0.0182